Chernobyl today-Fukushima Tomorrow

Chernobyl today and the gas masks for the kids from the nuclear disaster Someone asked me for more information on what happens after the Fukushima nuclear disaster to the site and the other reactors.  To answer this I looked into Chernobyl.

Taking a look at the history of Chernobyl  since the disaster and the efforts to contain the radioactive material and clean up the site, we can see what hurdles the Fukushima few have to fight everyday.  Today the reactor number 4 at Chernobyl (the reactor that had a melt down) is now enclosed in a large concrete shelter which was by October 1986.  The shell allowed continuing the operation of the other nuclear reactors at the plant.  Some 200 tons of highly radioactive material remain buried deep within it.  This radioactive material poses an environmental hazard until it is better contained/cleaned up.

A New Safe Confinement structure is due to be completed in 2014, being built adjacent and then will be moved into place on rails. It is to be an 18,000 tonne metal arch 110 metres high, 200 metres long and spanning 257 metres, to cover both unit 4 and the hastily-built 1986 structure. The design and construction contract for this was signed in 2007 with the Novarka consortium and preparatory work on site was completed in 2010. The Chernobyl Shelter Fund, set up in 1997, had received €864 million from international donors by early 2011 towards this project and previous work. It and the Nuclear Safety Account, set up in 1993, are managed by the European Bank for Reconstruction and Development (EBRD). The NSA had received 321 million by early 2011 for Chernobyl decommissioning and also projects in other ex-Soviet countries. The total cost of the new shelter is estimated to be €1.2 billion. Early in 2011 EBRD said a further €600 million was required for the structure. Design approval is expected by mid 2011.

Used fuel from units 1 to 3 is stored in each unit’s cooling pond, in a small interim spent fuel storage facility pond (ISF-1), and in the reactor of unit 3.

Chernobyl meltdown today-A lonely landscape In 1999, a contract was signed for the construction of a radioactive waste management facility to store 25,000 used radioactive fuel assemblies from units 1-3 and other nuclear wastes, as well as radioactive waste from decommissioning units 1-3. The contract included a processing facility, able to cut the RBMK fuel assemblies and to put the material in canisters, which will be filled with inert gas and welded shut. They would then be transported to dry storage vaults in which the fuel containers would be enclosed for up to 100 years. This facility, treating 2500 fuel assemblies per year, would be the first of its kind for RBMK fuel. However, after a significant part of these ISF-1 storage structures had been built, technical deficiencies in the concept emerged, and the contract was terminated in 2007. EBRD says that the licence for ISF-1 is unlikely to be renewed after 2016. A new interim spent fuel storage facility (ISF-2) is now to be completed by Holtec International by mid-2014. Design approval and funding from EBRD’s Nuclear Safety Account was in October 2010.

In April 2009, Nukem handed over a turnkey waste treatment centre for solid radioactive waste (ICSRM, Industrial Complex for Radwaste Management). In May 2010, the State Nuclear Regulatory Committee licensed the commissioning of this facility, where solid low- and intermediate-level wastes accumulated from the power plant operations and the decommissioning of reactor blocks 1 to 3 is conditioned. The wastes are processed in three steps. First, the solid radioactive wastes temporarily stored in bunkers is removed for treatment. In the next step, these wastes, as well as those from decommissioning reactor blocks 1-3, are processed into a form suitable for permanent safe disposal. Low- and intermediate-level wastes are separated into combustible, compactable, and non-compactable categories. These are then subject to incineration, high-force compaction, and cementation respectively. In addition, highly radioactive and long-lived solid waste is sorted out for temporary separate storage. In the third step, the conditioned solid waste materials are transferred to containers suitable for permanent safe storage.

As part of this project, at the end of 2007, Nukem handed over an Engineered Near Surface Disposal Facility for storage of short-lived radioactive waste after prior conditioning. It is 17 km away from the power plant at the Vektor complex within the 30-km zone. The storage area is designed to hold 55,000 m3 of treated waste which will be subject to radiological monitoring for 300 years, by when the radioactivity will have decayed to such an extent that monitoring is no longer required.

Chernobyl meltdown today-A hydrocephAnother contract has been created for a Liquid Radioactive Waste Treatment Plant, to handle some 35,000 cubic metres of low- and intermediate-level liquid wastes at the site. This will need to be solidified and eventually buried along with solid wastes on site.

In January 2008, the Ukraine government announced a four-stage decommissioning plan which incorporates the above waste activities and progresses towards a cleared site.